Estimation of Measurement Error Properties: The Physical Activity Measurement Survey

Wayne A. Fuller, Bryan Stanfill, and David Osthus
Iowa State University
ITSEW
June 2013

Outline

Measurement error; introduction

Simple models

Physical Activity Measurement Study

Procedure

Model

Estimates

Measurement

Conceptual quantity (Definition)

Age

Household

Cultivated cropland

Measuring instrument

Questionnaire

Photo interpretation

Physical measurement

Measurement Error and Definitions

Blood pressure is the conceptual average one would obtain if one could perform a large number of determinations with an accredited instrument

Unemployment rate is result obtained if one applies the Census Bureau procedure a large number of times to a large random sample

Types of Error

Device error

Thermometer

Questionnaire

Photo interpretation

Natural variability

Food intake

Physical activity

Lake size

Properties of Measurement Error

X = observation x = trueDistribution of X given x $E\{X \mid x\}$ $V\{X \mid x\}$

Mean Properties

$$E\{X \mid x\} = h(x)$$

Desirable: $E\{X \mid x\} = x$ for all x

Weaker: $E[E\{g(X) | x\}] = g(x)$

$$E\left\{n^{-1}\sum_{i\in A} X_i\right\} = \mu_{x}$$

Simple Model

$$X_{i} = x_{i} + u_{i}, i = 1, 2, ..., m$$

$$\begin{pmatrix} x_{i} \\ u_{i} \end{pmatrix} \sim NI \begin{pmatrix} \mu_{x} \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & 0 \\ 0 & \sigma_{u}^{2} \end{pmatrix}$$

$$\begin{pmatrix} X_{i} \\ x_{i} \end{pmatrix} \sim NI \begin{pmatrix} \mu_{x} \\ \mu_{x} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} + \sigma_{u}^{2} & \sigma_{x}^{2} \\ \sigma_{x}^{2} & \sigma_{x}^{2} \end{pmatrix}$$

$$E\{\overline{X}\} = E\{E(\overline{x} + \overline{u} \mid \overline{x})\} = E\{\overline{x}\} = \mu_{x}$$

$$V\{\overline{X}\} = n^{-1}(\sigma_{x}^{2} + \sigma_{u}^{2})$$

Simple Model (2)

$$X_{i} = x_{i} + u_{i}, i = 1, 2, ..., n$$

$$\theta = P\{x > C\} \quad \hat{\theta} = n^{-1} \sum_{i \in A} I\{X_{i} > C\}$$

$$E\{\hat{\theta}\} = P\{X > C\}$$

Example
$$\{\sigma_x^2 = 1, \sigma_u^2 = 0.15, C = 1.645\}$$

 $E\{\hat{\theta}\} = 0.0625, E\{\hat{\theta} - \theta\} = 0.0125$
At $n = 375, (Bias)^2 = Variance$

Estimating Error Properties

Additional data and Model, Replication

$$X_{ij} = x_i + u_{ij}$$

$$u_{ij} \sim ind (0, \sigma_u^2) \text{ ind of } x_i$$

$$\hat{\sigma}_u^2 = 0.5 \sum_{i=1}^d (X_{i2} - X_{i1})^2$$

Physical Activity Measurement Study (PAMS)

Principal Investigators:

Greg Welk, Kinesiology

Sarah Nusser, CSSM, Statistics

Alicia Carriquiry, Statistics

Data Collection: CSSM/SBRS (ISU)

Funding: NIH (R01 HL91024)

Physical Activity Measurement Study

Four Iowa counties, stratified, census tracts
Higher rates for minority tracts
List sample, Telephone screening, Age 21-70
Two years data collection; Sept. 2009-Sept. 2011
Time of year balance; 8 quarters
Monetary incentive

Sample

74% of telephone list contacted33% of 74% agreed88% of 33% completed two rounds1347 of 1450 used in analysis

Data

Two rounds of data collection
Wear armband monitor 24 hours
24-hour Physical Activity Recall (PAR)
Telephone following day

Energy Expenditure Model

 X_{ij} Monitor for person i on day j (log) $X_{ij} = x_{ij} + u_{ij}$ $u_{ij} \sim ind(0, \sigma_u^2)$ ind. of x_{kt} $x_{ij} = \mu + t_i + d_{ij} = \text{true on day } j$ $t_i = \text{long run average for } i$ day effect $= d_{ij} \sim ind(0, \sigma_d^2)$ ind. of t_i

Energy Expenditure Model(2)

 Y_{ij} Self report of person i for day j (log)

$$Y_{ij} = \beta_0^* + \beta_1 x_{ij} + r_i + e_{ij}$$

 r_i = person reporting effect (long run)

 e_{ii} = person day reporting effect

$$r_i \sim ind(0, \sigma_r^2)$$
 ind. of (x_{kt}, t_k, d_{kt})

$$e_{ij} \sim ind(0, \sigma_e^2)$$
 ind. of $(x_{kt}, t_k, d_{kt}, r_k)$

Model Assumptions

$$Y_{ij} = \mu + \beta_0 + \beta_1 (t_i + d_{ij}) + r_i + e_{ij}$$

$$X_{ij} = \mu + t_i + d_{ij} + u_{ij} = x_{ij} + u_{ij}$$

 $(t_i, d_{ij}, r_i, e_{ij}, u_{ij})$ mutually ind. $(\mathbf{0}, \mathbf{\Sigma})$

$$\Sigma = diag(\sigma_t^2, \sigma_d^2, \sigma_r^2, \sigma_e^2, \sigma_u^2)$$

Method of Moments Estimation

$$V\{X_{i1} - X_{i2}\} = V\{d_{i1} - d_{i2} + u_{i1} - u_{i2}\} = 2(\sigma_d^2 + \sigma_u^2)$$

$$V\{0.5(X_{i1} + X_{i2})\} = V\{t_i + \overline{d}_{i.} + \overline{u}_{i.}\} = \sigma_t^2 + 0.5(\sigma_d^2 + \sigma_u^2)$$

$$[\hat{\sigma}_u^2, (\hat{\sigma}_u^2 + \hat{\sigma}_d^2)]/\hat{\sigma}_t^2 = [0.22 (0.06), 0.40 (0.03)]$$

$$[\hat{\sigma}_e^2, (\hat{\sigma}_e^2 + \hat{\sigma}_r^2)]/\hat{\sigma}_t^2 = [0.22 (0.06), 0.44 (0.04)]$$

$$\hat{\beta}_0 = -0.05(0.01)$$

$$\hat{\beta}_1 = 0.75 (0.07)$$

Calibrated Self Report

$$Y_{ij} = \mu + \beta_0 + \beta_1 (t_i + d_{ij}) + r_i + e_{ij}$$

$$\beta_1^{-1} (Y_{ij} - \mu - \beta_0) + \mu = x_{ij} + \beta_1^{-1} r_i + \beta_1^{-1} e_{ij}$$

$$Y_{c,ij} = x_{ij} + r_{c,i} + e_{c,ij}$$

$$[\tilde{\sigma}_e^2, (\tilde{\sigma}_e^2 + \tilde{\sigma}_r^2), (\tilde{\sigma}_e^2 + \tilde{\sigma}_r^2, + \hat{\sigma}_d^2)]_c / \hat{\sigma}_t^2 = [0.38, 0.77, 0.95]$$

Variance Ratios

$$V\{\overline{Y}\}/V\{\overline{X}\}=1.39$$

Regr. Coeff., $R^2=0.50$ Error Var. known
$$V\{\hat{\beta}_{\cdot|Y}\}/V\{\hat{\beta}_{\cdot|X}\}=2.22$$

PAMS Study

Estimates of error variances
Estimate of calibration function

Internal Replication, (factor model)

$$Y_{2i} = \beta_{02} + x_i \beta_{12} + e_{2i}$$

$$Y_{1i} = \beta_{01} + x_i \beta_{11} + e_{1i}$$

$$X_i = x_i + u_i$$

$$(e_{2i}, e_{1i}, u_i) \sim (\mathbf{0}, diag(\sigma_{e2}^2, \sigma_{e1}^2, \sigma_u^2))$$

$$Cov\{Y_2(Y_2, Y_1, X)\} = (\beta_{12}^2 \sigma_x^2, \beta_{12} \beta_{11} \sigma_x^2, \beta_{12} \sigma_x^2)$$

Estimating Error Properties

External information

Administrative, aggregate

Census

Administrative, individual

Medical

Employer

Government (Revenue Canada)

Money for Replicates

Estimate 5% point under normality

$$X_{ij} = x_i + u_{ij}$$

 $(x_i, u_{ij}) \sim N[(\mu_x, 0), diag(1, 0.15)]$

$$\hat{\theta} = \overline{X} + 1.645(\hat{\sigma}_X^2 - \hat{\sigma}_u^2)^{0.5}$$

One X_i costs same as one d_f for $\hat{\sigma}_u^2$

Money for Replicates (2)

$$\hat{\theta} = \overline{X} + 1.645\hat{\sigma}_{x} = \overline{X} + 1.645(\hat{\sigma}_{X}^{2} - \hat{\sigma}_{u}^{2})^{0.5}$$

$$V(\hat{\theta}) = n^{-1}V(\overline{X}) + (1.645)^{2}V(\hat{\sigma}_{x})$$

$$V\{\hat{\sigma}_{x}\} \doteq 0.25\sigma_{x}^{-2}[2(n-1)^{-1}\sigma_{X}^{4} + 2d_{f}^{-1}\sigma_{u}^{4}]$$
Budget = 1000 equal cost
$$d_{f} = 73 \qquad n = 927$$

Survey Estimation

Probability weights

Adjusted for nonreponse by strata

Post strata-Census age, gender, minority

Some collapsing of post strata